GitHub
Copilot

GH-300 - aidecoded.tech

Syllabus
Domain Breakdown Exam Percentages
Domain 1: Responsible Al 7%
Domain 2: GitHub Copilot plans and features 31%

Domain 3: How GitHub Copilot works and handles data 15%

Domain 4: Prompt crafting and Prompt engineering 9%
Domain 5: Developer use cases for Al 14%
Domain 6: Testing with GitHub Copilot 9%

Domain 7: Privacy fundamentals and context exclusions 15

Domain 1: Responsible Al
Weight on Exam: 7%

This domain focuses on the ethical and responsible use of Al, particularly in the
context of software development. It covers the risks, limitations, and potential
harms of generative Al, and how to mitigate them by operating Al tools
responsibly.

Section: Explain responsible usage of Al

GH-300 - aidecoded.tech



This section covers the core principles of using Al tools like GitHub Copilot in a
way that is safe, ethical, and effective.

Using Al tools like GitHub Copilot introduces significant productivity gains, but it's
crucial to be aware of the associated risks. These risks can be categorized as
follows:

e Security Vulnerabilities: Al-generated code can sometimes be insecure. The
models are trained on vast amounts of public code, which may contain
vulnerabilities, outdated practices, or security flaws. A developer might
inadvertently introduce insecure code into their project if they accept
suggestions without careful review. For example, a suggestion might use a
deprecated cryptographic algorithm or be susceptible to SQL injection.

« Intellectual Property (IP) and Copyright Infringement: Generative Al models
learn from a massive corpus of data, including open-source code with various
licenses. There is a risk that the generated code might be a verbatim or near-
verbatim copy of existing code, potentially leading to license violations if not
properly identified and handled. GitHub Copilot includes filters to block
suggestions matching public code, but the ultimate responsibility for ensuring
IP compliance rests with the developer.

o Code Quality and Accuracy Issues: The code suggested by Al is not
guaranteed to be correct, optimal, or bug-free. It might be inefficient, fail to
handle edge cases, or not integrate well with the existing codebase. Over-
reliance on Al without critical thinking can lead to a decline in overall code
quality.

» Data Privacy Concerns: When using Al tools, there is a potential for sensitive
data, such as proprietary code, API keys, or personal information, to be
transmitted and processed by the Al service. It is essential to understand the
data handling policies of the specific Copilot plan being used (Individual,
Business, or Enterprise) to prevent data leaks.

o Over-reliance and Skill Atrophy: Developers might become overly dependent
on Al suggestions, which could lead to a gradual erosion of their own
problem-solving and coding skills. It can also reduce the learning
opportunities that come from struggling with and solving a problem
independently.

GH-300 - aidecoded.tech



Generative Al, while powerful, has inherent limitations that users must understand
to use it effectively.

o Dependence on Training Data: The quality and nature of an Al model's output
are entirely dependent on the data it was trained on. If the training data is
biased, contains errors, or is outdated, the model's suggestions will reflect
these flaws. For instance, Copilot's knowledge has a "cut-off" date, meaning it
may not be aware of the latest libraries, framework updates, or security best
practices released after its last major training cycle.

« Lack of True Understanding (Context Window): Al models do not
"understand" code in the way a human developer does. They predict the next
sequence of text based on patterns learned from training data. Their
"understanding" is limited by a "context window"—the amount of code and
text they can consider at one time. If the solution to a problem requires
understanding a broader context from other files or a complex architecture
that doesn't fit in this window, the suggestions may be irrelevant or incorrect.

» Potential for Bias: The training data, being a snapshot of public code, reflects
the biases present in that data. This can manifest in various ways, such as
generating code that is not inclusive, uses non-standard patterns, or prefers
solutions from a specific demographic of developers.

» Non-deterministic Output: For the same prompt, a generative Al tool might
produce different results at different times. This lack of determinism can be
challenging when trying to achieve consistent and reproducible outputs.

The developer is the ultimate pilot, not a passenger. The output from Al tools like
GitHub Copilot must always be treated as a suggestion, not a final answer.

e Accountability: The developer, not the Al, is accountable for the code that is
committed to the repository. This includes responsibility for any bugs, security
vulnerabilities, or performance issues introduced by the suggested code.

o Ensuring Correctness and Fitness for Purpose: Validation is necessary to
confirm that the code actually works as intended, handles edge cases
correctly, and meets the specific requirements of the project.

o Security and Compliance: A thorough review is essential to catch potential
security flaws and ensure that the code complies with project standards, legal

GH-300 - aidecoded.tech



requirements, and licensing obligations.

Integration and Maintainability: Al-generated code must be checked to
ensure it integrates seamlessly with the existing codebase and follows
established coding conventions. Code that is difficult to read or maintain can
create long-term problems for the team.

Operating a responsible Al involves adhering to a set of principles designed to
ensure that Al systems are developed and used in a manner that is fair, reliable,
and trustworthy. Microsoft, GitHub's parent company, defines six key principles
for responsible Al:

1.

Fairness: Al systems should treat all people fairly and avoid affecting similarly
situated groups of people in different ways. For Copilot, this means being
vigilant about biases in code suggestions.

. Reliability & Safety: Al systems should perform reliably and safely. This

requires rigorous testing of Al-generated code to ensure it is robust and does
not introduce security risks.

Privacy & Security: Al systems must be secure and respect privacy. This
involves understanding how your code snippets (prompts) are handled and
using features within Copilot Business and Enterprise to prevent sensitive data
from being retained by the service.

. Inclusiveness: Al systems should empower everyone and engage people.

This means designing Al interactions that are accessible and beneficial to all
users.

. Transparency: Al systems should be understandable. While the inner

workings of large language models are complex, developers should
understand the limitations, sources, and nature of the suggestions they
receive.

. Accountability: People should be accountable for Al systems. Developers and

organizations are responsible for the code they ship, regardless of whether it
was written by a human or an Al. This means maintaining meaningful human
oversight and control.

The potential harms of generative Al mirror its risks and are centered around
several key areas:

GH-300 - aidecoded.tech



Bias: Al can perpetuate and even amplify societal biases found in its training
data, leading to unfair or discriminatory outcomes. In coding, this could result
in code that is not accessible or performs poorly for certain user groups.

Insecure Code: A primary harm is the proliferation of insecure code. A study
found that developers using an Al assistant were more likely to produce code
with security vulnerabilities than those without.

Lack of Fairness and Equity: Al-powered tools could widen the gap between
developers, favoring those who have access to them or creating an over-
reliance that hinders the development of fundamental skills for junior
developers.

Privacy Violations: The inadvertent exposure of personal data or proprietary
code through prompts sent to the Al service is a significant potential harm.

Lack of Transparency: When an Al tool generates code, it's not always clear
why it produced that specific output. This "black box" nature can make it
difficult to trust, debug, or verify the suggestion, leading to hidden flaws.

Mitigating the harms of Al requires a proactive and multi-faceted approach:

Maintain Human Oversight: Always have a "human in the loop." Code
generated by Al must be critically reviewed, tested, and understood by a
developer before it is accepted.

Implement Robust Testing and Analysis: Use automated security scanning
tools (like GitHub Advanced Security), static analysis, and dynamic analysis to
detect vulnerabilities in Al-generated code. A comprehensive testing suite is
essential.

Use Al as a Co-pilot, Not an Autopilot: Treat the Al as a tool to augment your
skills, not replace them. Use it to handle boilerplate code, explore new ideas,
and learn, but apply your own expertise to make final decisions.

Configure Privacy and Data Controls: For organizations, choosing GitHub
Copilot Business or Enterprise is critical. These plans offer enhanced privacy
by not retaining or using your code snippets to train the public model.
Configure policies to prevent the use of sensitive files as context.

Educate and Train Developers: Ensure that all developers using Al tools are
trained on the principles of responsible Al, the tool's limitations, and the

GH-300 - aidecoded.tech



organization's policies for its use.

Ethical Al is the practice of designing, building, and deploying Al systems in a way
that aligns with human values and ethical principles. It's the broader framework
that encompasses responsible Al. The key considerations of ethical Al include:

Ensuring Human Agency and Oversight: Al should assist humanity, not
undermine human autonomy.

Technical Robustness and Safety: Al systems need to be resilient and secure.
Privacy and Data Governance: Individuals' data should be protected.

Transparency: The decisions made by Al should be explainable to the extent
possible.

Diversity, Non-Discrimination, and Fairness: Al should be available to, and
benefit, all of humanity, avoiding unfair bias.

Societal and Environmental Well-being: Al systems should be used for the
good of society and the environment.

Accountability: Mechanisms must be in place to ensure responsibility for Al
systems and their outcomes.

Practice Exam Questions for Domain 1

Here are 15 multiple-choice questions to help you test your understanding of
Responsible Al.

1.

What is the most significant security risk when accepting code from GitHub
Copilot without review?

a) The code might be less performant.
b) The code might contain security vulnerabilities from its training data.
c) The code might not follow the project's style guide.

d) The code might use too much memory.

. GitHub Copilot's knowledge is limited by its training data. What is a direct

consequence of this limitation?

a) It can only write code in Python.

GH-300 - aidecoded.tech



b) It cannot generate code that is longer than 100 lines.
c) It may suggest code using outdated libraries or insecure practices.

d) It always produces the exact same code for a given prompt.

3. Under the principles of Responsible Al, who is ultimately accountable for
the code commiitted to a repository?

a) The Al model (GitHub Copilot).

b) The developer who accepts the suggestion.
c) The project manager.

d) The company that created the Al model.

4. Which GitHub Copilot plan is designed to prevent code snippets from being
retained or used to train public models, offering greater privacy?

a) Copilot Individual
b) Copilot Free Tier
c) Copilot Business and Enterprise
d) Copilot for Students
5. The "context window" in a generative Al model refers to:
a) The pop-up window where suggestions appear.
b) The limited amount of code and text the model can consider at one time.
c) The time it takes for the model to generate a suggestion.
d) The settings panel for configuring the Al.

6. What is the best way to mitigate the risk of intellectual property
infringement when using GitHub Copilot?

a) Only use Copilot for personal projects.

b) Enable the filter that blocks suggestions matching public code and have
developers review the suggestions.

c) Rewrite every suggestion manually.

d) Avoid using Al tools altogether.

GH-300 - aidecoded.tech



7. Which principle of Responsible Al focuses on ensuring that Al systems are
understandable to users?

a) Fairness
b) Inclusiveness
c) Accountability

d) Transparency

8. A developer notices GitHub Copilot is suggesting code that reflects a bias.
This is most likely a result of:

a) A bug in the developer's IDE.
b) A configuration error in the Copilot extension.
c) Biases present in the public code it was trained on.
d) The developer's own coding style.
9. Why is it crucial to validate the output of Al tools?
a) To increase the amount of code being written.
b) To ensure the code is correct, secure, and meets project requirements.
c) Because the Al tool requires feedback to function.

d) To make sure the Al doesn't get turned off.

10. Treating Al as a "co-pilot, not an autopilot" is a key strategy for mitigating
which of the following risks?

a) Over-reliance and skill atrophy.
b) High subscription costs.

c) Slow IDE performance.

d) Network connectivity issues.

11. Which of the following is an example of a potential "harm" from generative
Al in software development?

a) Faster completion of boilerplate code.
b) The proliferation of insecure code across multiple projects.

c) Suggestions for learning a new programming language.

GH-300 - aidecoded.tech



d) Automatic generation of documentation.

12. According to Microsoft's Responsible Al principles, ensuring an Al system
performs reliably and safely is known as:

a) Reliability & Safety
b) Accountability
c) Privacy & Security
d) Fairness
13. What is a primary limitation of GitHub Copilot regarding new technologies?
a) It can't be used with new technologies.

b) Its knowledge is limited to its last training date, so it may be unaware of the
latest releases.

c) It intentionally provides incorrect code for new frameworks.
d) It requires a special license to work with new technologies.

14. How can an organization best protect its proprietary source code when its
developers use GitHub Copilot?

a) By telling developers not to use it for sensitive projects.
b) By using the Copilot Enterprise plan with strict data governance policies.
c) By running a script to delete proprietary code from suggestions.
d) By using the free version of GitHub Copilot.
15. The concept of "ethical Al" primarily involves:
a) Building the fastest and most efficient Al models.

b) Ensuring Al systems are developed and used in a way that aligns with
human values.

c) Making Al models open source.

d) Replacing as many human jobs as possible with Al.

Correct Answers: 1-b, 2-c, 3-b, 4-c, 5-b, 6-b, 7-d, 8-c, 9-b, 10-a, 11-b, 12-a, 13-b,
14-b, 15-b.

GH-300 - aidecoded.tech



Domain 2: GitHub Copilot plans and features
Weight on Exam: 31%

This is the most heavily weighted domain. It requires a thorough understanding of
the different Copilot product tiers, their specific features, and how to use them
effectively in various environments like the IDE and the command line.

Section 1: Identify the different GitHub Copilot plans

This section focuses on the distinctions between the available Copilot
subscriptions, ensuring you can choose the right plan for a given scenario.

The primary differences between the Copilot plans revolve around management,
privacy, and advanced features.

Feature

Target
Audience

Core Features

Management

Privacy Policy

IP Indemnity

GH-300 - aidecoded.tech

Copilot Individual

Individual
developers,
students, open-
source maintainers.

Code suggestions,
Chat in IDE, CLI,
Mobile.

User-managed
subscription.

Code snippets may
be retained and
used to improve the
service unless opted
out.

Not included.

Copilot Business

Teams and
organizations of all
sizes.

All Individual features.

Centralized license
management and
organization-level
policy controls.

Code snippets are
never retained. They
are transmitted for a
response and then
discarded.

Included. Provides

legal protection against

IP infringement claims
from Copilot's
suggestions.

Copilot Enterprise

Large organizations
requiring advanced
security and
customization.

All Business features.

All Business
management features.

Same as Business:
Code snippets are
never retained.

Included.

10



Content
Exclusions

Audit Logs

Personalization

GitHub.com
Integration

Not available.

Not available.

N/A

N/A

Available. Admins can
prevent Copilot from
using content from
specific
files/repositories for
context.

Available. Admins can
view audit logs for
actions related to
Copilot usage and
policies.

N/A

N/A

Available.

Available.

Yes. Can be
customized with an
organization's private
repositories and
documentation via
Knowledge Bases.

Yes. Copilot Chat is
integrated directly into
GitHub.com for
summarizing PRs,
asking about repos,
etc.

Note: The "Copilot Business for non-GHE" mentioned in the syllabus refers to the
standard Copilot Business plan for customers who are not on the GitHub
Enterprise platform. Its features are the same as the standard Business plan.

While GitHub Copilot is a GitHub product, the code it helps you write does not

need to be hosted on GitHub.com.

o Authentication: You still need a personal GitHub account to sign up for and
manage a Copilot Individual subscription. For Business and Enterprise, the
organization must be on GitHub, but the users it grants licenses to can work
on code hosted anywhere (e.g., Azure DevOps, GitLab, Bitbucket, or on-

premises).

e Functionality: Copilot's functionality within the IDE is independent of where
the remote repository is hosted. It analyzes the code on your local machine to
provide context for its suggestions.

GH-300 - aidecoded.tech

1



GitHub Copilot is an Al pair programmer that integrates directly into your code
editor (like VS Code, JetBrains IDEs, Visual Studio, and Neovim). Its primary
function is to provide real-time, context-aware assistance to accelerate
development.

e How it works: As you type, Copilot analyzes the context from your open files,
including comments, function names, and existing code. It sends this context
to the Copilot service, which uses a large language model (LLM) to generate
and suggest single lines or entire functions of code.

GitHub Copilot Chat is a conversational interface built into the IDE that allows
developers to interact with the Al using natural language. It's more than just code
completion; it's a tool for a wide range of development tasks.

o Key Uses:

[e]

Explaining Code: Highlight a block of code and ask Copilot to explain what
it does.

Generating Code: Ask Copilot to write a function, create a class, or
generate boilerplate code based on a description.

Debugging: Describe an error or paste a stack trace and ask for help
finding the bug.

Generating Tests: Ask Copilot to write unit tests for a specific piece of
code.

Refactoring: Ask for suggestions on how to improve or refactor existing
code.

Copilot can be invoked in several ways to suit different workflows:

o Automatic Suggestions: Copilot provides suggestions automatically as you
type.

o Manual Trigger: You can press a keyboard shortcut (e.g., Alt+\ or Option+)) to
manually ask for a suggestion.

o Multiple Suggestions: You can open a separate panel (e.g., Ctrl+Enter) to
view up to ten alternative suggestions and choose the best one.

GH-300 - aidecoded.tech 12



o Copilot Chat Pane: Open the dedicated chat window to have a longer, more
detailed conversation.

« Inline Chat (Quick Chat): Use a keyboard shortcut (Ctrl+l or Cmd+I) to open a
small chat box directly within your code editor for quick questions or
modifications to a selected code block.

o Code Actions ("Sparkle" Menu): A "sparkle" icon appears next to code
blocks, allowing you to ask Copilot to perform quick actions like Fix, Explain,
Generate Docs, or Generate Tests.

o Terminal Integration (CLI): Copilot can be triggered in a supported terminal or
via the GitHub CLI to suggest shell commands.

Section 2: Identify the main features with GitHub Copilot
Individual and Business

This section dives deeper into the specific feature sets and differences between
the two most common plans.

As outlined in the table above, the key differentiators are:

» Policy Management: Copilot Business allows organization administrators to
centrally manage who gets access to Copilot and to set policies, such as
excluding certain files from being used as context. This is not available in the
Individual plan.

» Data Privacy: This is a critical distinction. Copilot Business is designed for
corporate environments and does not retain any code snippets. The
Individual plan may retain this data to improve the model, although users can
opt out.

e IP Indemnity: Copilot Business provides a legal guarantee (indemnity) to
customers against copyright claims arising from the use of Copilot's
suggestions. The Individual plan does not offer this protection.

« Billing and Seat Management: Business plans are billed centrally to an
organization, which can then assign "seats" to its members. Individual plans
are billed directly to the user.

GH-300 - aidecoded.tech



For a solo developer using the Individual plan, the experience within the IDE is rich
and powerful. The features available are the core Copilot experience:

Code Completion: Suggestions as you type.

Al Chat: Full access to Copilot Chat for explaining, debugging, and generating
code.

Multi-language Support: Works with a vast array of programming languages.
IDE Integration: Works in all major supported IDEs.

CLI Support: Can be used in the command line.

The primary limitations are not in the IDE features themselves, but in the lack of
organizational management and the data privacy model.

Section 3: Identify the main features of GitHub Copilot
Business

This section covers the administrative and policy features that are exclusive to the
Business plan.

Administrators of a GitHub organization can configure Copilot policies in the
organization's settings.

1.
2.
3.

Navigate to Settings > Copilot > Policies.
Here, you can manage access to Copilot for users and teams.

Under Content exclusion, you can specify paths to files or directories within
repositories that should be ignored by Copilot. For example, you might add
**[config/secrets.yml to prevent Copilot from ever accessing the content of
that file for context. This helps prevent the accidental exposure of sensitive
information.

For compliance and security, administrators need to track important events.

Purpose: The audit log captures events related to GitHub Copilot, such as
when a user is granted or loses access, when a policy is changed, or when
specific features are enabled or disabled.

How to Search:

GH-300 - aidecoded.tech



Go to your organization's main page.
Under your organization name, click Security.

In the sidebar, click Audit log.

ol A =

. To find Copilot-related events, you can filter the log using the
action:copilot query. This will show you all events, which you can then
inspect for details about who performed the action, what the action was,
and when it occurred.

For large organizations, managing user licenses (seats) manually can be
inefficient. GitHub provides a REST API to automate this process.

o Use Case: You can integrate the APl into your internal onboarding and
offboarding scripts. When a new developer joins the company, the script can
automatically call the API to assign them a Copilot seat. When they leave, the
script can remove them.

e API Endpoints: The API allows you to list all users with a Copilot seat, add
users, and remove users from your organization's Copilot Business
subscription.

Section 4: Identify the main features with GitHub Copilot
Enterprise

Copilot Enterprise builds on the Business plan by adding powerful features for
personalization and deeper integration with the GitHub platform.

This is a key feature exclusive to Enterprise. It brings the power of Copilot Chat
out of the IDE and directly into the GitHub web interface.

e Repository-Wide Understanding: You can ask questions about an entire
repository, such as "Where is the authentication logic defined?" or
"Summarize the purpose of this repo."

o Pull Request Assistance: Copilot can summarize the changes in a PR to
speed up reviews.

» Streamlined Workflows: Developers can get information about code without
having to clone the repository and open it in an IDE, which is useful for
managers, reviewers, and new team members.

GH-300 - aidecoded.tech

15



Also unique to Enterprise, this feature automates a common development task.
When a user creates a pull request, they can ask Copilot to generate a summary
of the changes. Copilot analyzes the diff and writes a description, which helps
reviewers quickly understand the context and purpose of the PR.

This is the flagship feature of Copilot Enterprise, allowing organizations to
personalize the Al.

e« Whatitis: A Knowledge Base is an index of selected repositories and
Markdown documentation from within your GitHub organization.

e How it works: When a developer asks a question in Copilot Chat, the system
can draw on the information in the Knowledge Base to provide answers that
are tailored to the organization's private code, internal libraries, and best
practices.

+ Benefits:

o Hyper-Relevant Suggestions: Code suggestions and chat answers align
with your internal coding patterns.

o Faster Onboarding: New developers can ask questions about the private
codebase and get up to speed faster.

o Improved Consistency: Encourages the use of internal libraries and
design patterns.

e Creating and Managing: Administrators can create and manage knowledge
bases from the organization settings, selecting which repositories and
documentation to include in the index.

Practice Exam Questions for Domain 2

1. Which GitHub Copilot plan is specifically designed to NOT retain or learn
from user code shippets?

a) Copilot Individual
b) Copilot for Open Source
c) Copilot Business and Enterprise

d) Copilot for Students

GH-300 - aidecoded.tech

16



2. A company wants to provide its developers with legal protection against IP
infringement claims related to Al-generated code. Which feature, available
in Copilot Business, addresses this?

a) Audit Logs
b) IP Indemnity
c) Content Exclusions

d) REST APl Management

3. What is the primary function of "Knowledge Bases" in GitHub Copilot
Enterprise?

a) To provide access to public Stack Overflow answers.

b) To personalize Copilot with an organization's private code and
documentation.

c) To block Copilot from accessing certain files.
d) To manage billing and user seats.

4. A developer wants to see ten different suggestions from Copilot for their
current line of code. How can they achieve this?

a) By typing the comment // show me 10 suggestions.

b) By opening the multiple suggestions panel with a keyboard shortcut (e.g.,
Ctrl+Enter).

c) This is not possible; Copilot only gives one suggestion at a time.

d) By using the /suggest command in Copilot Chat.

5. An administrator wants to prevent GitHub Copilot from using a file named
credentials.json for context across all repositories in the organization.
Where would they configure this?

a) In each user's personal settings.
b) In the organization's settings under "Copilot Policies > Content Exclusions".
c) In the repository's .gitignore file.

d) By filing a support ticket with GitHub.

GH-300 - aidecoded.tech



6. Which feature, unique to Copilot Enterprise, allows developers to get an Al-
generated summary of changes directly in the GitHub web interface?

a) Inline Chat
b) Copilot CLI
c) Pull Request Summaries

d) IP Indemnity

7. A developer highlights a confusing block of code in their IDE and wants to
understand what it does. What is the most effective tool for this task?

a) Standard GitHub search.

b) GitHub Copilot Chat, by asking it to explain the code.
c) The IDE's "Find Usages" feature.

d) Manually tracing the code's execution.

8. To automate the process of assigning and removing Copilot licenses for
developers, an organization should use the:

a) GitHub CLI.
b) GitHub REST API.
c) Copilot Chat interface.
d) Organization Audit Log.
9. What is the main purpose of the organization audit log for GitHub Copilot?
a) To track the performance of code suggestions.
b) To monitor administrative actions like policy changes and seat assignments.
c) To log every suggestion a user accepts.
d) To bill the organization for usage.

10. A user's code is hosted on a private GitLab server. Can they use GitHub
Copilot?

a) No, Copilot only works with code hosted on GitHub.com.

b) Yes, as long as they have a GitHub account for the Copilot subscription, it
will work in their local IDE regardless of where the code is hosted.

GH-300 - aidecoded.tech 18



c) Only if they have a Copilot Enterprise license.
d) Only if they use the GitHub CLI.
11. Which of the following is NOT a primary use case for GitHub Copilot Chat?
a) Explaining a piece of code.
b) Executing code and deploying it to a server.
c) Generating unit tests for a function.
d) Refactoring a method to make it more efficient.

12. The "context window" is a key limitation of Copilot. What does this mean for
a developer?

a) Copilot can only be open in one window at a time.

b) Copilot's suggestions may be less accurate on large, complex projects
because it can only consider a limited amount of code at once.

c) Copilot only works for a limited time before needing to be restarted.

d) Copilot can only suggest code in a small pop-up window.

13. Which slash command would you use in Copilot Chat to generate
documentation for a selected function?

a) /explain
b) /fix
c) /doc
d) /new
14. How is GitHub Copilot for the CLI typically installed?
a) By downloading a standalone installer.
b) As an extension to the official GitHub CLI (gh).
c) Itis installed automatically with VS Code.
d) Through a package manager like npm or pip.
15. What is the key difference between Copilot Chat and inline suggestions?

a) Inline suggestions are automatic, while Chat is a conversational, on-demand
interface.

GH-300 - aidecoded.tech



b) Chat can only explain code, while inline suggestions can only write code.
c) There is no difference; they are two names for the same feature.

d) Chat is only available in the Enterprise plan.

Correct Answers: 1-c, 2-b, 3-b, 4-b, 5-b, 6-c, 7-b, 8-b, 9-b, 10-b, 11-b, 12-b, 13-
c, 14-b, 15-a.

Domain 3: How GitHub Copilot works and handles
data

Weight on Exam: 15%

This domain covers the technical underpinnings of GitHub Copilot. It is crucial to
understand how your code is handled, how suggestions are generated, and the
inherent limitations of the technology.

Section 1: Describe how GitHub Copilot handles data

This section focuses on the flow of data between your editor and the Copilot
service.

For the Copilot Individual plan, the data handling policy is a key point of
distinction:

« Data Collection: To provide the service, GitHub Copilot transmits snippets of
your code from your IDE to the Copilot service. This includes the content of
your current file, related open files, and other context.

» Data Retention and Use: Unless you opt out, these code snippets, which
GitHub calls "User Engagement Data," may be retained and used by GitHub
and Microsoft to improve the underlying Al models. This data is anonymized
and aggregated, but the code itself is used for training purposes.

o Opting Out: Users of the Individual plan have the option to disable this data
collection in their GitHub settings. If they opt out, their code snippets are
handled like they are on the Business plan: transmitted to get a suggestion and
then immediately discarded.

GH-300 - aidecoded.tech 20



In contrast, Copilot Business and Enterprise plans offer a stricter privacy
promise. Code snippets are never retained and are not used to train the public
models.

The data flow for generating a standard code suggestion is a multi-step process
designed for speed and relevance.

1. Context Gathering: The Copilot extension in your IDE gathers context. This
includes the code in your current file (both above and below your cursor), the
names and paths of other open files, and general information about the
programming language being used.

2. Prompt Creation: This context is bundled into a "prompt" that is sent to the
Copilot service.

3. Transmission: The prompt is sent over a secure HTTPS connection to the
GitHub Copilot service.

4. Al Model Processing: The service passes the prompt to a large language
model (LLM). The LLM predicts the most likely continuation of your code
based on the patterns it learned during its training.

5. Suggestion Returned: The generated code suggestion is sent back to your
IDE.

6. Display: The extension displays the suggestion, often as "ghost text" that you
can accept or ignore.

The data flow for Copilot Chat is similar but includes conversational context:

1. Context Gathering: Like code completion, Chat gathers context from your
open files.

2. Conversational History: Critically, it also includes the history of your current
chat conversation. This allows you to ask follow-up questions and have the Al
"remember" what you were previously discussing.

3. Prompt Creation: Your natural language question, the code context, and the
conversation history are combined into a rich prompt.

4. Transmission and Processing: The process is the same as code completion—
the prompt is sent to the service, processed by the LLM, and a natural
language response (which may include code blocks) is generated.

GH-300 - aidecoded.tech 21



5. Response Returned: The response is sent back to the Chat interface in your
IDE.

Copilot Chat is designed to handle a variety of prompt types, not just requests to
write code. It processes input differently based on the user's intent:

» Code Generation: Prompts like "write a function that fetches data from this
API" are processed with a focus on generating new, complete code blocks.

o Code Explanation: When you select code and ask, "explain this," the model
focuses on analyzing the provided code and generating a natural language
description of its purpose and logic.

» Debugging/Fixing Code: For prompts like "why is this code throwing a null
reference error?" or using the /fix command, the model analyzes the code for
common errors and suggests specific changes or corrections.

» General Questions: For questions like "what's the best way to handle
asynchronous calls in JavaScript?”, the model draws on its general
knowledge to provide explanations, examples, and best practices.

Section 2: Describe the data pipeline lifecycle of GitHub Copilot
code suggestions in the IDE

This section provides a more detailed, step-by-step look at what happens from
the moment you stop typing to the moment a suggestion appears.

Lifecycle of a GitHub Copilot Code Suggestion:
1. User Action: The developer types code or pauses in their IDE.

2. Contextual Analysis (Client-side): The Copilot extension in the IDE analyzes
the surrounding code, open tabs, and other file content to gather relevant
context.

3. Secure Prompt Transmission: The collected context is sent as a prompt over
HTTPS to a proxy server that fronts the GitHub Copilot service.

4. Pre-processing and Filtering (Proxy): The proxy service applies initial filters.
This can include safeguards to prevent inappropriate prompts from reaching
the model.

GH-300 - aidecoded.tech

22



5.

LLM Inference: The sanitized prompt is sent to the large language model. The
model generates one or more potential code completions.

Post-processing and Filtering (Proxy): The suggestions from the LLM are
sent back to the proxy server. Here, critical filters are applied:

» Quality Check: Poor-quality or incomplete suggestions may be filtered
out.

» Public Code Duplication Filter: This is a crucial step. The suggestion is
checked against a massive index of public code on GitHub. If the
suggestion is a verbatim or near-verbatim match to existing public code, it
is blocked (unless the user has explicitly turned this filter off).

. Response Transmission: The final, filtered suggestion is sent back to the IDE

extension.

Display to User: The IDE displays the suggestion as ghost text, ready to be
accepted by the developer.

The public code duplication filter is a key feature for mitigating the risk of
copyright and license infringement.

How it works: GitHub has created an index of all public code on its platform.
When Copilot generates a suggestion, the service compares it against this
index.

The ~150 Character Rule: While the exact mechanism is proprietary, the
general rule of thumb is that if a suggestion contains a block of code around
150 characters or longer that is a direct match to code in the public index, the
filter will trigger.

Outcome: When the filter triggers, the suggestion is blocked and is not shown
to the user. This helps prevent unintentional plagiarism of open-source code.

Configuration: Users can choose to disable this filter in their settings, but it is
enabled by default as a safeguard.

Section 3: Describe the limitations of GitHub Copilot (and LLMs
in general)

GH-300 - aidecoded.tech

23



Understanding the limitations of the technology is essential for using it responsibly
and effectively.

The LLM is trained on a vast amount of public code. The patterns, libraries, and
coding styles that appear most frequently in this training data will heavily
influence the suggestions Copilot provides.

o Effect: This means Copilot is very good at generating boilerplate code or
using popular frameworks (like React or Express) because it has seen
countless examples. However, it may suggest a popular but outdated or
suboptimal solution over a more modern, less common, but better one. It
reflects the "wisdom of the crowd," which isn't always the best wisdom.

LLMs are not continuously learning in real-time. They are trained in massive,
intensive sessions, and their knowledge has a "cut-off" date.

» Effect: Copilot's knowledge about libraries, frameworks, and language
features is frozen at the time of its last major training cycle. It may not be
aware of the latest version of a library, newly discovered security
vulnerabilities, or new features added to a programming language. Therefore,
its suggestions can be based on outdated or deprecated information.

LLMs are incredibly sophisticated pattern-matching and text-prediction engines.
They are not logical calculators or reasoning engines.

o What they do well: They can "reason" based on the text they have seen. If
you ask it to explain code, it is generating text that is statistically likely to be a
good explanation based on similar code and explanations in its training data.

e Where they fail: They cannot perform actual mathematical calculations
reliably. A prompt like "calculate 2+2" will likely yield "4" because that pattern
is common. But a complex calculation may yield a confident but incorrect
answer. The model is predicting the text of the answer, not computing it. This
is why you should never trust an LLM for precise calculations or strict logical
proofs without verification.

An LLM cannot see your entire codebase at once. It can only consider a limited
amount of information, known as the context window.

» Effect: The context window for Copilot might be several thousand "tokens"
(pieces of words or code). While this allows it to see your current file and parts

GH-300 - aidecoded.tech



of others, it cannot grasp the full architecture of a large, multi-repository
project. This can lead to suggestions that are locally correct but globally
wrong—for example, a function that works on its own but doesn't integrate
correctly with a class defined in another part of the project that fell outside the
context window.

Practice Exam Questions for Domain 3

1. Under the GitHub Copilot Individual plan, what happens to your code
shippets by default?

a) They are never sent to GitHub.

b) They are sent, used for a suggestion, and immediately discarded.
c) They may be retained and used to improve the underlying models.
d) They are stored in your personal GitHub repository.

2. A developer is working on a proprietary algorithm and wants to ensure their
code is never retained by the Copilot service. What is the most reliable way
to achieve this?

a) Use the Copilot Individual plan and remember to opt out of data collection.
b) Use a Copilot for Business or Enterprise license.
c) Add a comment // DO NOT TRAIN at the top of the file.
d) Disconnect from the internet while writing the sensitive code.

3. What is the primary role of the "proxy server" in the Copilot data pipeline?
a) To store a user's code for later use.
b) To run the large language model directly on the user's machine.

c) To act as an intermediary that applies security and content filters to
prompts and suggestions.

d) To bill the user for each suggestion.
4. The public code duplication filter is designed to mitigate which risk?
a) Poor code performance.

b) Insecure code suggestions.

GH-300 - aidecoded.tech



c) Unintentional copyright or license infringement.
d) Suggestions using outdated libraries.

5. Copilot suggests a function that uses a library version that was deprecated
six months ago. What is the most likely reason for this?

a) The developer's local dependencies are out of date.

b) The Copilot model's training data has a knowledge "cut-off" date from
before the library was deprecated.

c) A temporary bug in the Copilot service.
d) The developer is using the wrong IDE.
6. What is a "context window" in the context of an LLM?
a) The Ul element where chat responses are displayed.
b) The limited amount of code and text the model can consider at one time.
c) The period during which a user can try Copilot for free.

d) The settings panel for configuring context exclusions.

7. Which piece of information is NOT typically part of the initial context sent
from the IDE for a code completion suggestion?

a) The code in the current file.

b) The developer's GitHub username and password.
c) The file paths of other open tabs.

d) The programming language being used.

8. Why should a developer be cautious about trusting GitHub Copilot for
complex mathematical calculations?

a) Copilot is intentionally programmed to give wrong answers for math.

b) Copilot is a text-prediction engine that mimics calculation patterns, it
doesn't actually compute the answer.

c) Math is a premium feature only available in Copilot Enterprise.

d) Copilot can only perform addition, not subtraction or multiplication.

GH-300 - aidecoded.tech 26



9.

10.

11.

12.

The lifecycle of a code suggestion begins with "User Action" and ends with
"Display to User". At which stage is the public code duplication filter
applied?

a) During "Contextual Analysis" on the client-side.
b) During "LLM Inference" when the model generates the code.

c) During "Post-processing and Filtering" on the proxy server, after the
suggestion is generated.

d) After the suggestion has already been displayed to the user.

Copilot is more likely to provide a high-quality suggestion for a popular
framework like React than for a niche, internal company framework. This is
a direct effect of:

a) GitHub having a business partnership with React.

b) The model's output being heavily influenced by the most common
examples in its training data.

c) Copilot intentionally limiting suggestions for private code.
d) The internal framework being poorly written.

How does the data flow for Copilot Chat differ from standard code
completion?

a) It is the only feature that uses the internet.
b) It includes the conversational history as part of the prompt.
c) It uses a completely different, smaller Al model.

d) It does not gather any context from the user's code.

A user on the Individual plan opts out of data collection. How is their data
handled now?

a) Copilot stops working until they opt back in.

b) It is handled with the same privacy standards as a Copilot Business license
(sent, processed, discarded).

c) The data is still retained but is anonymized differently.

d) The user can no longer use Copilot Chat.

GH-300 - aidecoded.tech

27



13. A Copilot suggestion is perfectly functional but does not account for a
specific business rule defined in a different file that wasn't open. This is
likely a failure caused by:

a) A bug in the IDE extension.
b) The public code duplication filter.
c) The limitations of the model's context window.

d) The model's knowledge cut-off date.

14. The step where Copilot's response is checked for things like quality and
duplication before being sent to the user is called:

a) Pre-processing.

b) Post-processing.

c) User acceptance testing.
d) Context gathering.

L5. Which of the following best describes how Copilot Chat processes a prompt
asking it to /fix a code block?

a) It deletes the code and asks the user to rewrite it.

b) It sends the code to a human developer at GitHub for review.

c) It analyzes the code for common errors and generates a corrected version.
d) It only checks for spelling mistakes in the comments.

Correct Answers: 1-c, 2-b, 3-c, 4-c, 5-b, 6-b, 7-b, 8-b, 9-c, 10-b, 11-b, 12-b, 13-c,
14-b, 15-c.

Domain 4: Prompt Crafting and Prompt Engineering
Weight on Exam: 9%

This domain focuses on the skills required to communicate effectively with GitHub
Copilot. Mastering how to craft clear prompts and engineer them for complex
tasks is key to unlocking the Al's full potential.

GH-300 - aidecoded.tech 28



Section 1: Describe the fundamentals of prompt crafting

Prompt crafting is the art of writing clear and effective instructions to get the
desired output from an Al like GitHub Copilot.

The "prompt" is not just the immediate comment or code you write. GitHub Copilot
determines context by gathering information from your IDE environment to provide
relevant suggestions. This includes:

o Content of the Current File: Copilot heavily weighs the code both above and
below your cursor.

o Other Open Files: It also pulls context from other files you have open in your
editor. This helps it understand project-wide patterns and dependencies.

» File Paths and Names: The names of your files and directories provide clues
about the project's structure and purpose.

» Programming Language: Copilot identifies the language of the file to ensure
syntactically correct suggestions.

» General Code Patterns: It leverages its vast training data to apply common
coding patterns relevant to the context it has gathered.

You can prompt GitHub Copilot in two primary ways:

1. Through Code: The most common way to prompt Copilot is by writing code.
The function names, variable names, and overall structure of your code act as
an implicit prompt, guiding Copilot to suggest the next logical steps.

2. Through Natural Language (Comments): You can write comments in plain
language (like English) to explicitly tell Copilot what you want it to do. A well-
written comment is one of the most powerful ways to direct Copilot.

Example:

JavaScript

// Create a JavaScript function that takes a URL, fetches JSON data from it, and returns the data.
/I Handle potential errors by logging them to the console and returning null.
async function fetchData(url) {

/] Copilot will generate the function body here

}

A well-structured prompt often contains several parts to guide the Al effectively:

GH-300 - aidecoded.tech

29



e Instruction: The specific task you want the Al to perform (e.g., "Create a
function," "Refactor this code," "Explain this regular expression").

o Context: Relevant information the Al needs to complete the task (e.g., "using
the axios library," "that takes an array of users as input").

o Examples (Few-Shot Prompting): Providing one or more input/output
examples to show the Al the exact pattern you want it to follow.

» Persona (for Chat): Assigning a role to the Al to influence the tone and style of
its response (e.g., "Act as a senior database administrator...").

Prompting is the mechanism by which a developer directs the Al's behavior. The
quality of the prompt directly determines the quality of the output. The role of a
good prompt is to:

o Reduce Ambiguity: Clearly define the task to prevent the Al from making
incorrect assumptions.

« Provide Sufficient Context: Give the Al all the necessary information to
generate a relevant and accurate response.

e Constrain the Output: Guide the Al to produce output in the desired format,
style, or level of complexity.

Essentially, the developer uses prompts to steer the Al from a general-purpose
code generator into a specialized tool for the specific task at hand.

This is a fundamental concept in interacting with LLMs.

e Zero-Shot Prompting: You ask the model to perform a task without giving it
any prior examples of how to do it. You are relying on the model's pre-existing
knowledge.

o Example: // Create a function that converts a string to kebab-case.

o Few-Shot Prompting: You provide the model with one or more examples
(shots) of the task before asking it to complete a new one. This helps the
model understand the specific pattern you want it to follow, leading to more
accurate and customized results. code JavaScript

o Example:

/*
Convert the string to a URL slug.

GH-300 - aidecoded.tech 30



Examples:

"Hello World" - "hello-world"

"GitHub Copilot is Great" - "github-copilot-is-great"
"Another Example For The Al" >

*/

// Copilot will likely generate "another-example-for-the-ai"

In GitHub Copilot Chat, the conversation history is a critical part of the context.

How it works: Each time you send a new message, Copilot includes the
previous turns of the conversation in the prompt it sends to the model.

Benefit: This creates a continuous dialogue where the Al "remembers" what
you've already discussed. You can ask follow-up questions, ask for
modifications to previous answers, and build on ideas iteratively without
having to repeat the entire context each time.

To get the best results from Copilot, follow these best practices:

1.

Be Specific and Clear: Avoid vague language. Instead of // make a thing, write
/| create a function named 'calculateTotalPrice' that takes 'price' and 'quantity'
as arguments.

. Break Down Complex Problems: Don't ask Copilot to write an entire

application in one prompt. Decompose the problem into smaller, manageable
functions or modules and prompt for each one.

. Provide Context Through Code: Use descriptive variable and function names.

A function named getUserByld gives Copilot a much better clue than getData.

. Use Comments to Guide: Write comments to explain your intent for the next

block of code.

. Provide Examples: For specific formatting or complex logic, use few-shot

prompting to show Copilot exactly what you need.

. Iterate and Refine: Your first prompt may not yield the perfect result.

Rephrase your request, add more context, or correct the Al's output and use
that to guide the next suggestion.

Section 2: Describe the fundamentals of prompt engineering

Prompt engineering is the more disciplined and structured process of designing,
refining, and optimizing prompts to reliably and efficiently control an Al's output

GH-300 - aidecoded.tech

31



for more complex tasks.

Principles:
o Clarity and Specificity: The foundation of all prompt engineering.

o Context-Richness: Ensuring the Al has all relevant data, examples, and
constraints.

o Iterative Refinement: Viewing prompt creation as a cycle of testing,
analyzing, and improving.

"Training Methods" (In-Context Learning): When using an LLM like Copilot,
you are not truly "training" or permanently changing the base model. Instead,
you are using in-context learning. By providing examples and instructions in
your prompt (few-shot prompting), you are "training" the model for that
specific interaction only. It learns the desired pattern from the context you
provide in the prompt itself.

Best Practices:

o Chain of Thought (CoT) Prompting: For complex problems, you can ask
the Al to "think step by step." This forces the model to break down its
reasoning process, often leading to more accurate results. While more
common in chat, you can simulate this in code comments.

o Systematic Prompting: Instead of guessing, create a template for your
prompts and methodically test changes to see what improves the output.

Prompt engineering is an iterative loop.

1.

Define Goal: Clearly identify the desired output. What should the code do?
What format should it be in?

. Craft Initial Prompt: Write the first version of your prompt based on best

practices.

. Generate Output: Get the response from GitHub Copilot.

. Analyze Result: Compare the output to your goal. Is it correct? Is it efficient?

Does it follow your style guide?

. Refine Prompt: Based on the analysis, modify the prompt. You might:

» Add more specific instructions.

GH-300 - aidecoded.tech

32



e Provide a few-shot example.
o Clarify an ambiguity.
o Correct a mistake in the previous output.

6. Repeat: Go back to step 3 with the refined prompt. Continue this cycle until
you achieve a consistently high-quality output.

Practice Exam Questions for Domain 4

1. Which of the following is NOT considered part of the context GitHub Copilot
uses to generate a suggestion?

a) Code in other open files in the IDE.
b) The developer's current keyboard layout.
c) The file path of the current file.

d) Comments written above the cursor.

2. A developer writes the following code: // Given a user object with
'firstName' and 'lastName’, create a string 'lastName, firstName'. Example: {
firstName: John', lastName: 'Doe' } - 'Doe, John'. This is an example of:

a) Zero-shot prompting.
b) Context exclusion.

c) Few-shot prompting.
d) Prompt injection.

3. What is the primary purpose of using a "persona" in a prompt for Copilot
Chat?

a) To verify the user's identity.
b) To influence the tone, style, and expertise of the Al's response.
c) To specify the programming language for the output.
d) To restrict the length of the response.
4. How does GitHub Copilot Chat use the conversation history?

a) It ignores the history to provide a fresh answer every time.

GH-300 - aidecoded.tech 33



b) It uses the history to train the global Al model.

c) It includes the history in the context of new prompts to maintain a
continuous dialogue.

d) It saves the history to the local file system as a log.

5. A developer needs Copilot to generate a function that follows a very
specific, non-standard coding pattern used in their project. What is the most
effective approach?

a) Hope Copilot figures it out on its own.
b) Type a vague comment and accept the first suggestion.
c) Provide a few-shot prompt with one or more examples of the pattern.
d) Disable Copilot, as it cannot handle custom patterns.
6. "Prompt Engineering" can be best described as:
a) A one-time action of writing a perfect prompt.
b) The process of building and training large language models.

c) An iterative process of designing, testing, and refining prompts to achieve
reliable Al output.

d) The user interface for interacting with Copilot.

7. Breaking a complex problem down into smaller functions and prompting
Copilot for each one is a best practice that primarily helps to:

a) Use more of your Copilot subscription.
b) Reduce ambiguity and ensure each piece of code is correct.
c) Write more lines of code.
d) Test the limits of the Al.
8. What is a "zero-shot" prompt?

a) A prompt that provides zero examples and relies on the Al's existing
knowledge.

b) A prompt that gets zero results from the Al.

c) A prompt that must be written with zero spelling errors.

GH-300 - aidecoded.tech



10.

11.

12.

13.

d) A prompt that uses an image as an example.

. The iterative "prompt process flow" is best described as:

a) Define - Craft - Generate - Analyze - Refine.
b) Craft » Compile - Debug - Deploy.

c) Analyze - Design - Implement - Test.

d) Generate - Copy - Paste - Commit.

A developer types const user = and Copilot suggests
document.getElementByld('user');. This is an example of Copilot being
prompted by:

a) A natural language comment.

b) The code itself.

c) A few-shot example.

d) A direct command in Copilot Chat.

The principle of "in-context learning" means that:

a) Copilot permanently updates its global model based on your prompts.

b) Copilot learns a pattern for a single interaction based on the examples you
provide in the prompt itself.

c) Copilot can only learn from code in the current file.
d) Copilot requires a special "learning mode" to be enabled.

What is the main advantage of using descriptive variable names like
customerAddress instead of data?

a) It makes the code run faster.

b) It provides clearer, more specific context for Copilot's suggestions.
c) Itis required by law for all commercial software.

d) It reduces the cost of using the Copilot service.

Which of the following is the CLEAREST and most effective prompt?
a) // make a loop

b) // do the thing with the array

GH-300 - aidecoded.tech

35



c) // sort the 'users' array by the 'lastName' property in alphabetical order
d) // code here

14. Asking Copilot Chat to "think step by step" when solving a logic puzzle is an
example of what advanced prompting technique?

a) Zero-shot prompting.

b) Chain of Thought (CoT) prompting.
c) Context exclusion.

d) Data anonymization.

15. If you are unsatisfied with a Copilot suggestion, what should be your
immediate next step in the prompt engineering process?

a) Accept the suggestion and fix it manually.
b) Report a bug to GitHub support.

c) Analyze why the suggestion was poor and refine your prompt to be more
specific.

d) Close your IDE and restart it.

Correct Answers: 1-b, 2-c, 3-b, 4-c, 5-c, 6-¢c, 7-b, 8-a, 9-a, 10-b, 11-b, 12-b, 13-c,
14-b, 15-c.

Domain 5: Developer use cases for Al
Weight on Exam: 14%

This domain explores how Al tools like GitHub Copilot can be leveraged to
enhance developer productivity, assist throughout the software development
lifecycle (SDLC), and what limitations to keep in mind.

Section 1: Improve developer productivity

This section covers the common, day-to-day tasks where Copilot can provide
significant value.

e Learning new programming languages and frameworks:

GH-300 - aidecoded.tech

36



o How it helps: When learning a new language, you often know what you
want to do but not how to write it. Copilot can act as a real-time translator.
You can write a comment describing the logic in a language you know, and
Copilot will generate the equivalent code in the new language.

o Example (Chat Prompt): "l know Python. How would | write a for loop that
iterates over a dictionary in C#? Show me an example."

e Language translation:

o How it helps: This goes beyond learning. You can take an entire function
or script written in one language and ask Copilot Chat to translate it into
another. This is invaluable for migration projects.

o Example (Chat Prompt): Highlight a JavaScript function and ask,
"Translate this function to Python."

o Context switching:

o How it helps: Developers frequently switch between different tasks,
projects, or parts of a codebase. This mental shift takes time. Copilot helps
you get back up to speed faster by providing context-aware suggestions.
When you open a file you haven't touched in weeks, Copilot's suggestions
and its ability to explain code can quickly remind you of the file's purpose
and logic.

e Writing documentation:

o How it helps: Documentation is crucial but often tedious to write. Copilot
Chat can generate documentation for an entire function or class.

o Example (Chat Command): Select a function and use the /doc command
in chat or the "Generate Docs" sparkle menu option to create detailed
comments explaining the function's purpose, parameters, and return
value.

o Personalized context-aware responses:

o How it helps: Because Copilot analyzes your open files, its suggestions
are tailored to your project's specific coding style, variable names, and
internal logic. It feels less like a generic tool and more like a pair
programmer that understands your current task. With Copilot Enterprise,

GH-300 - aidecoded.tech



this is taken a step further with Knowledge Bases, which allow it to learn
from your organization's private repositories to provide hyper-relevant
answers.

o Generating sample data:

o How it helps: Need a list of dummy users for a unit test or a mock JSON
response for a front-end component? Instead of writing it by hand, you
can ask Copilot.

o Example (Code Comment): code JavaScript

// Create an array of 5 user objects, each with an id, name, and email.
const mockUsers = [
/I Copilot will generate the array here

I;
e Modernizing legacy applications:
o How it helps: Copilot can assist in refactoring old code to use modern

language features, translating code from an old framework to a new one,
or helping to add tests to previously untested legacy code.

» Debugging code:

o How it helps: Copilot Chat can be a powerful debugging partner. You can
paste an error message and the relevant code and ask, "Why am | getting
this error?" or "What is the bug in this code?". It can often spot common
mistakes like null reference errors, off-by-one errors, or incorrect API
usage.

o Data science:

o How it helps: Data scientists can use Copilot to speed up tasks like data
cleaning, writing complex queries, generating boilerplate code for data
visualizations (e.g., Matplotlib or Seaborn in Python), and creating machine
learning models.

o Code refactoring:

o How it helps: You can highlight a piece of code and ask Copilot Chat to
refactor it.

o Example (Chat Prompt): Select a long, complex function and ask,
"Refactor this function to be more modular and readable," or "Convert

GH-300 - aidecoded.tech 38



these promise chains to use async/await."

Section 2: Discuss how GitHub Copilot can help with SDLC
management

GitHub Copilot is not just a coding tool; it can provide value at nearly every stage
of the Software Development Lifecycle (SDLC).

e 1. Planning & Requirements: While not its primary function, Copilot Chat can
be used as a brainstorming partner to flesh out technical requirements or
explore different implementation approaches for a user story.

o 2.Design & Architecture: Developers can ask Copilot for advice on design
patterns. For example, "What is a good way to implement the observer pattern
in TypeScript?" or "Show me an example of a REST API structure for a user
management service."

« 3. Implementation (Coding): This is Copilot's core strength. It accelerates this
phase by writing boilerplate code, completing lines, generating entire
functions, and helping developers stay "in the flow."

» 4. Testing: Copilot is excellent at generating unit tests. It can identify edge
cases you might have missed and create test data. The /tests command in
chat is a powerful accelerator for improving code coverage.

» 5.Deployment: Copilot can help write CI/CD pipeline configurations (e.g.,
GitHub Actions workflows), Dockerfiles, or shell scripts needed for
deployment. It can also suggest gh CLI or other command-line tool
commands.

» 6. Maintenance: In the maintenance phase, developers often work with
unfamiliar or old code. Copilot's ability to explain code is invaluable for
understanding the existing logic before making changes. Its refactoring and
debugging capabilities also speed up bug fixes and updates.

Section 3: Describe the limitations of using GitHub Copilot

While powerful, it's crucial to be aware of Copilot's limitations to use it effectively
and safely.

GH-300 - aidecoded.tech

39



» Risk of Incorrect or Insecure Code: This is the most critical limitation.
Copilot's suggestions are based on patterns from its training data, which may
include buggy or insecure code. The developer is always accountable for the
final code.

+ Knowledge Cut-off: Copilot is not aware of libraries, security vulnerabilities,
or language features introduced after its last training date. It may suggest
outdated or deprecated solutions.

e Limited Context Window: Copilot cannot see your entire project's
architecture. Its suggestions are based on a limited context, which can lead to
code that is locally correct but globally inconsistent with your application's
design.

» Potential for Skill Atrophy: Over-reliance on Copilot, especially for junior
developers, can hinder the development of fundamental problem-solving and
coding skills. It should be used as a tool to augment, not replace, critical
thinking.

e Requires Human Oversight: Copilot is a "co-pilot," not an "autopilot." Every
significant suggestion must be reviewed, understood, tested, and validated by
the developer.

Section 4: Describe how to use the productivity APl to see how
GitHub Copilot impacts coding

For organizations, measuring the return on investment (ROI) is key. GitHub
provides metrics to help administrators understand Copilot's impact.

o Whatitis: While not a real-time "Productivity API" in the traditional sense,
GitHub provides a Copilot Metrics dashboard and a Metrics API for
organization administrators. This allows leaders to see aggregated data on
Copilot usage across their teams.

o Key Metrics Provided: The API can provide insights into:

o Suggestions Accepted: The number of times developers accept a Copilot
suggestion.

o Lines of Code Accepted: The total volume of code generated by Copilot
and accepted by developers.

GH-300 - aidecoded.tech 40



o Acceptance Rate: The percentage of suggestions shown that are
ultimately accepted. This can be a key indicator of how useful developers
find the tool.

o Active Users: The number of developers with assigned seats who are
actively using Copilot.

e How it's Used: An organization can use this data to:

o Quantify Impact: Show leadership the volume of code being produced
with Al assistance.

o ldentify Adoption Trends: See which teams are using Copilot most
effectively.

o Calculate ROI: Combine these metrics with qualitative developer surveys
to build a business case for the tool's value in terms of time saved and
productivity gained.

Practice Exam Questions for Domain 5

1. A developer is new to the Rust programming language but is experienced in
Python. What is the most effective way for them to use Copilot to learn
Rust?

a) Ask Copilot to write an entire application in Rust from scratch.

b) Write comments in English describing logic and let Copilot generate the
Rust code.

c) Turn off Copilot, as it will only confuse them.
d) Only accept single-line suggestions.

2. Which Copilot feature is most directly used for writing documentation for an
existing function?

a) The /explain command in chat.
b) The /doc command or "Generate Docs" action.
c) Inline code completion.

d) The public code duplication filter.

GH-300 - aidecoded.tech

41



3. A developer needs to create a mock JSON object with 10 realistic-looking
user profiles for a unit test. This is a good use case for:

a) Generating sample data.
b) Language translation.

c) Context switching.

d) Code refactoring.

4. In which phase of the Software Development Lifecycle (SDLC) does
Copilot's ability to generate unit tests provide the most value?

a) Planning.

b) Design.

c) Testing.

d) Deployment.

5. What is the MOST critical limitation a developer must remember when using
GitHub Copilot?

a) It sometimes generates code that is poorly formatted.

b) The developer is ultimately accountable for the correctness and security of
the code.

c) It can slow down the IDE on very large files.
d) It only works when connected to the internet.
6. The "GitHub Copilot Metrics API" allows an organization to do what?
a) View the specific code snippets each developer has accepted.
b) Track usage metrics like suggestion acceptance rates to measure impact.
c) Control the quality of Copilot's suggestions.
d) Bill developers individually for their usage.

7. A developer highlights a function that uses nested for loops and asks
Copilot Chat to "rewrite this using the Array.map and Array.filter methods."
This is an example of:

a) Code refactoring.

GH-300 - aidecoded.tech



b) Debugging.
c) Learning a new language.
d) Generating sample data.

8. How does GitHub Copilot Enterprise's "Knowledge Bases" feature enhance
personalized, context-aware responses?

a) It allows Copilot to search the public internet for answers.

b) It personalizes Copilot with an organization's private repositories and
documentation.

c) It lets developers rate the quality of each suggestion.
d) It increases the context window to include the developer's entire hard drive.

9. A developer pastes an error message from their terminal into Copilot Chat
and asks for help. This is an example of using Copilot for:

a) Deployment.

b) Modernizing legacy applications.
c) Debugging.

d) SDLC Management.

10. Over-reliance on Copilot, especially for junior developers, can lead to what
potential negative outcome?

a) Faster code completion.

b) Increased security vulnerabilities.

c) Erosion of fundamental problem-solving skills (skill atrophy).
d) Higher subscription costs for the company.

11. Copilot suggests a perfectly valid function, but it doesn't integrate with a
class defined in another part of the project that wasn't open in the editor.
This is a direct consequence of which limitation?

a) The knowledge cut-off date.
b) The limited context window.

c) The risk of insecure code.

GH-300 - aidecoded.tech



12.

13.

14.

15.

d) The public code duplication filter.

Which of the following tasks is a good use case for Copilot in the
"Deployment" phase of the SDLC?

a) Writing user stories.

b) Designing the database schema.

c) Generating a GitHub Actions workflow file for continuous integration.

d) Refactoring a legacy COBOL application.

What does the "acceptance rate" metric in the Copilot dashboard indicate?

a) The percentage of developers who have accepted their invitation to use
Copilot.

b) The percentage of suggestions shown that are accepted by developers.
c) The total lines of code accepted per day.

d) The overall developer satisfaction score.

How does Copilot help reduce the friction of "context switching"?

a) By preventing developers from switching between different projects.

b) By providing context-aware suggestions that help developers get up to
speed quickly in an unfamiliar file.

c) By automatically closing irrelevant files.

d) By translating the entire codebase into a single language.

A data scientist is using a Jupyter Notebook. How can Copilot assist them?
a) It cannot be used in Jupyter Notebooks.

b) By writing Python code for data cleaning, analysis, and creating
visualizations.

c) By automatically running the cells and producing the output.

d) By performing the complex mathematical calculations itself.

Correct Answers: 1-b, 2-b, 3-a, 4-c, 5-b, 6-b, 7-a, 8-b, 9-c, 10-c, 11-b, 12-c, 13-b,
14-b, 15-b.

GH-300 - aidecoded.tech

44



Domain 6: Testing with GitHub Copilot
Weight on Exam: 9%

This domain covers how to leverage GitHub Copilot as a tool to improve the quality
of your code through effective testing. It focuses on generating, enhancing, and
leveraging tests for better security and performance.

Section 1: Describe the options for generating testing for your
code

This section explores how Copilot can be used to create various types of tests
from scratch.

GitHub Copilot can significantly speed up the creation of tests by generating the
necessary boilerplate and test cases.

o Unit Tests: This is Copilot's strongest testing use case. You can highlight a
function and ask Copilot to generate tests for it. It will typically create the test
file (if it doesn't exist), import the necessary functions, and write several test
cases, including for valid inputs, invalid inputs, and edge cases.

o How to trigger:
1. In your code file, right-click on a function or class.
2. In Copilot Chat, use the /tests command.
3. Use the "Generate Tests" action from the "sparkle" menu.

« Integration Tests: While more complex, you can still use Copilot to assist with
integration tests. By providing the context of multiple files (e.g., a controller
and a service it calls), you can prompt Copilot to write a test that checks the
interaction between them. You often need to be more descriptive in your
prompt, explaining the setup and the expected interaction.

o Example Prompt: "Write an integration test using Jest and Supertest for
the /users POST endpoint. It should mock the database service, call the
endpoint with a valid user payload, and assert that the response status is
201."

e Other Test Types (e.g., End-to-End, E2E): For E2E tests using frameworks like
Cypress or Playwright, Copilot can be very helpful for writing the test steps.

GH-300 - aidecoded.tech



Because these tests often involve descriptive, step-by-step actions, they
translate well from natural language prompts.

o

Example Prompt (in a Cypress test file): code JavaScript

/| Test the user login flow.
// 1. Visit the login page.
// 2. Find the email input and type a valid email.
// 3. Find the password input and type a valid password.
[/ 4. Click the submit button.
/] 5. Assert that the URL redirects to the dashboard.
it('should log in a valid user’, () = {

/] Copilot will generate the Cypress commands here

b;

One of the key benefits of using Al for test generation is its ability to think of
scenarios you might forget.

o How it works: Because the LLM has been trained on a vast amount of code
and corresponding tests, it has learned common patterns of failure. When you
ask it to generate tests for a function, it doesn't just consider the "happy path."
It will often automatically generate tests for:

o

Null or undefined inputs: What happens if a required argument is missing?
Empty inputs: What if an array or string is empty?

Incorrect data types: What if a number is passed where a string is
expected?

Boundary conditions: For a function that works with numbers, what
happens at the boundaries (e.g., O, -1, max_integer)?

e This feature helps developers build a more robust test suite, improving overall
code quality.

Section 2: Enhance code quality through testing

This section focuses on using Copilot to improve an existing test suite.

You can use Copilot Chat as a test reviewer.

e How it works: Open an existing test file, highlight a test or a series of tests,
and ask Copilot for feedback.

 Example Prompts:

GH-300 - aidecoded.tech

46



o "Review these tests. Are there any important edge cases I'm missing?"
o "Can you make these test assertions more specific?"
o "Refactor this test to follow the Arrange-Act-Assert pattern more clearly."

Setting up a new test file often involves repetitive boilerplate code, such as
importing testing libraries, the code to be tested, and setting up beforeEach or
afterEach hooks. Copilot excels at this.

» How to trigger: Simply create a new test file with a descriptive name (e.qg.,
user.service.test.js). Often, just by creating the file and typing import, Copilot
will correctly infer and suggest the necessary imports and the basic describe
block structure for your tests.

Writing good assertions is key to effective testing. Copilot can help you write more
meaningful and precise assertions.

o How it helps: After you've written the "Arrange" and "Act" parts of your test,
you can write a comment describing the expected outcome, and Copilot will
generate the assertion code.

o Example: code JavaScript
/] Act

const result = calculateTotalPrice(10, 5);

/] Assert that the result is 50.

// Assert that the result is a positive number.
expect(result).toBe(50); // Copilot can generate this line and more
expect(result).toBeGreaterThan(0);

Section 3: Leverage GitHub Copilot for security and
performance

This section explores advanced use cases for testing, moving beyond correctness
to security and optimization.

Copilot's context window is key here. When you are writing new code in a file, and
you have the corresponding test file open in another tab, Copilot uses the context
from your tests to inform its suggestions.

o How it works: If your existing tests enforce certain rules (e.g., input validation,
error handling), Copilot will be more likely to generate new code that adheres

GH-300 - aidecoded.tech

47



to those rules. It learns the "contract" of your code from your tests and tries to
follow it. This can help you write more robust and bug-resistant code from the
start.

GitHub Copilot Enterprise brings Al assistance directly into the pull request
review process on GitHub.com.

o Collaborative Reviews: With Copilot Chat on GitHub, a reviewer can ask
questions about a PR without having to pull the code down locally. For
example: "What was the purpose of this change?" or "Explain the logic in this
new function."

o Security Best Practices: A reviewer can leverage Copilot to spot potential
issues.

o Example Prompt (in a PR comment): @copilot review this function for
potential security vulnerabilities like SQL injection.

» Performance Considerations: Reviewers can similarly ask for performance
analysis.

o Example Prompt: @copilot could this database query be optimized?

While not a replacement for dedicated security scanners like GitHub Advanced
Security, Copilot has some built-in capabilities to help developers avoid common
vulnerabilities.

o How it works: GitHub has implemented filters and tailored the model to
recognize common insecure coding patterns (like those in the OWASP Top
Ten). When it detects that you are writing code in a sensitive context (e.g., a
database query, a system command), it will try to steer you towards safer
practices. For example, it will favor parameterized queries over string
concatenation to prevent SQL injection.

» Vulnerability Scans: It also has a filter that can detect and warn you about
insecure suggestions, such as those using hardcoded credentials, outdated
cryptographic methods, or known vulnerable dependencies.

You can use Copilot Chat as a performance consultant.
e How it works: Highlight a piece of code that you suspect is inefficient.

 Example Prompts:

GH-300 - aidecoded.tech 48



o "Can you make this function more performant?"
o "lIs there a more efficient way to write this loop?"
o "Refactor this code to be asynchronous to avoid blocking the main thread."

» Copilot might suggest using a more efficient algorithm, a better data structure,
or leveraging parallel processing, depending on the context.

Practice Exam Questions for Domain 6

1. What is the most direct way to ask Copilot to generate a set of unit tests for
a specific function in your IDE?

a) Emailing the function to GitHub support.
b) Describing the function in a text file and uploading it to Copilot.
c) Highlighting the function and using the /tests command in Copilot Chat.

d) Writing the tests manually is the only option.

2. When generating tests, Copilot often suggests scenarios like null inputs,
empty arrays, and incorrect data types. This primarily helps the developer
to:

a) Increase the line count of the test suite.

b) Test the "happy path" scenario.

c) ldentify and cover important edge cases.

d) Ensure the code follows the correct style guide.

3. A developer wants to use Copilot to create an end-to-end test using
Playwright. What is the most effective prompting strategy?

a) Write a single comment: // Test everything.
b) Write a series of comments describing each user action step-by-step.
c) Ask Copilot Chat to /generate application.
d) Manually write the entire test without Al assistance.
4. How can a developer use Copilot to improve an existing test suite?

a) By asking Copilot to delete the existing tests and start over.

GH-300 - aidecoded.tech 49



b) By asking Copilot Chat to review the tests for missing edge cases or to
suggest more specific assertions.

c) Copilot can only create new tests, not improve existing ones.
d) By committing the tests to a special "review" branch.

5. Which statement best describes Copilot's capability in identifying security
vulnerabilities?

a) It is a certified security scanner and can replace tools like GitHub Advanced
Security.

b) It has filters to avoid suggesting insecure patterns like SQL injection and
can sometimes detect vulnerabilities.

c) It has no knowledge of security and frequently suggests vulnerable code.
d) It can only detect security issues in Python code.

6. The "Arrange-Act-Assert" pattern is a best practice for structuring tests.
How can Copilot assist with the "Assert" part?

a) It can run the test and tell you if it passed or failed.

b) It can generate assertion code based on a comment describing the
expected outcome.

c) It automatically adds console.log statements to every test.

d) It can only help with the "Arrange" and "Act" parts.

7. How can having a comprehensive test file open in your IDE improve the
quality of Copilot's suggestions in your main application code?

a) It doesn't; Copilot only looks at the current file.
b) It makes the suggestions slower but more creative.

c) Copilot uses the tests as context to understand the code's expected
behavior and will generate new code that aligns with that behavior.

d) It increases the character limit for suggestions.

8. A developer highlights a loop that is processing a large amount of data and
asks Copilot Chat, "Can you make this more performant?" This is an
example of using Copilot for:

GH-300 - aidecoded.tech 50



a) Generating unit tests.
b) Code optimization.

c) Security scanning.

d) Writing documentation.

9. In a GitHub Enterprise environment, where can a developer use Copilot to
review a pull request for potential performance issues without cloning the
code locally?

a) In their local IDE's chat window.

b) In the GitHub.com web interface using Copilot Chat within the PR.
c) By sending the PR link to a special Copilot email address.

d) This is not a feature of GitHub Copilot Enterprise.

10. Generating boilerplate code, such as import statements and describe/it
blocks for a new test file, is a task where Copilot is:

a) Very inefficient and should be avoided.
b) Highly efficient and can save a lot of repetitive typing.
c) Only capable of doing this for JavaScript.

d) A premium feature not available in the standard plans.

11. Which of the following is an example of an integration test that Copilot could
help write?

a) A test that checks if a single mathematical function returns the correct sum.

b) A test that verifies the interaction between a web controller and a data
service.

c) A test that confirms a single component renders correctly in isolation.
d) A static analysis check for code style.

12. Which of the following is NOT a good use case for testing with GitHub
Copilot?

a) Generating boilerplate code for a Jest test file.

b) Suggesting edge cases for a data validation function.

GH-300 - aidecoded.tech



c) Providing a formal, certified security audit of an application.

d) Writing assertions to check the properties of a returned object.

13. A developer wants to ensure a new function handles being passed
undefined as an argument. The best way to use Copilot for this would be:

a) Hope Copilot's normal suggestions handle it.

b) Ask Copilot Chat to /tests for the function, as it will likely include a test case
for this scenario.

c) Manually write the test, as Copilot cannot handle undefined.
d) Ask Copilot Chat to /doc the function.

L4. Copilot's ability to suggest safer alternatives to insecure patterns (like
parameterized queries) is a form of:

a) Proactive security assistance.
b) Reactive debugging.

c) Performance enhancement.
d) Code completion.

15. A developer has a working test but feels the assertion is too generic
(expect(result).toBeDefined()). How can Copilot help?

a) By asking it to "make this assertion more specific," which might lead to
suggestions like expect(result.property).toEqual('expectedValue').

b) By deleting the assertion, forcing the developer to write a better one.
c) Copilot cannot help with assertions.
d) By adding more generic assertions like expect(result).not.toBeNuli().

Correct Answers: 1-c, 2-c, 3-b, 4-b, 5-b, 6-b, 7-c, 8-b, 9-b, 10-b, 11-b, 12-c, 13-b,
14-a, 15-a.

Domain 7: Privacy fundamentals and context

exclusions
Weight on Exam: 15%

GH-300 - aidecoded.tech

52



This domain is critical for anyone using Copilot in a professional or organizational
setting. It covers the different product SKUs, privacy considerations, how to
control what Copilot "sees," and troubleshooting common issues.

Section 1: Describe the different SKUs for GitHub Copilot

"SKU" (Stock Keeping Unit) is another term for the different product plans or tiers

available. Understanding the differences is fundamental to choosing the right one.

This is a recap and reinforcement of the plans discussed in Domain 2, but with a
specific focus on the privacy implications of each.

o Copilot Individual:
o SKU: Aimed at solo developers, students, and open-source contributors.

o Privacy Consideration: This is the most important point to remember. By
default, the code snippets ("User Engagement Data") from users on this
plan may be retained and used by GitHub to train and improve the Al
models. Users have the ability to opt out of this in their settings. If they do
opt out, their data is handled with the same privacy as the Business plan
(transmitted for the suggestion, then discarded).

o Copilot Business:
o SKU: The standard offering for teams and organizations of any size.

o Privacy Consideration: This plan is designed for corporate privacy. Code
snippets are never retained after a suggestion is returned. The data is not
used to train the public LLMs. This SKU also provides IP indemnity, adding
a layer of legal protection.

o Copilot Enterprise:

o SKU: The premium offering for large organizations that need advanced
features and customization.

o Privacy Consideration: It inherits all the strict privacy protections of the
Business SKU (no data retention). Furthermore, its personalization
features, like Knowledge Bases, are self-contained within the
organization, ensuring that an organization's private code used for
personalization does not leak into the public models.

GH-300 - aidecoded.tech

53



These configurations are only available for Copilot Business and Enterprise and
are managed by organization administrators.

o Seat Management: Admins can grant or revoke access to Copilot for specific
users or entire teams within the organization.

e Policy Management: Admins can enable or disable certain Copilot features. A
key policy is the ability to prevent suggestions that match public code. While
enabled by default, an organization can choose to disable this filter (though
it's generally not recommended).

o Content Exclusions: This is a powerful feature covered in more detail later.
Admins can define file paths or entire repositories that should be completely
ignored by Copilot, preventing it from using their content as context for
suggestions.

This refers to how Copilot can be configured at the repository level.

o Whatitis: While there isn't a single, dedicated copilot.json file for all settings,
you can control Copilot's behavior through files like .gitignore. More directly,
you can use the github.copilot.editor.exclude setting in your editor's
configuration (e.g., in VS Code's settings.json).

e How it works: This setting allows you to specify files or languages that Copilot
should be disabled for. For example, you could disable Copilot for all
Markdown files or for a specific file that contains sensitive credentials. This
provides a granular, project-specific level of control that complements the
organization-wide settings.

Section 2: Identify content exclusions

This section dives deep into the feature that allows organizations to prevent
Copilot from accessing sensitive content.

o Organization-level configuration:
1. An organization admin navigates to Settings > Copilot > Policies.
2. Under the "Content exclusion" section, they can add repository paths.

3. The syntax supports wildcards, e.g., **/src/secrets/,
**[config/credentials.yml, or specifying an entire repository.

GH-300 - aidecoded.tech 54



» Effect: Once configured, Copilot will not read the content of these files or
repositories when gathering context for suggestions, for any user in the
organization working on that code.

o Primary Effect: Enhanced Privacy and Security. This is the main goal. It
prevents Copilot from being exposed to secret keys, API credentials,
deployment configurations, or proprietary algorithms that an organization
wants to keep completely isolated.

o Secondary Effect: Reduced Suggestion Relevance. There is a trade-off. If
you exclude a file that contains important business logic or helper functions,
Copilot will not be aware of that logic. This can lead to suggestions in other
files being less accurate or relevant because Copilot is working with
incomplete context.

» Not Retroactive: Content exclusions apply to context gathering from that point
forward. They do not erase any data that might have been retained from
Copilot Individual users before the policy was set or before they were on a
Business plan.

o Client-Side Awareness: The exclusion is enforced by the client-side extension
in the IDE. It relies on the extension being up-to-date and respecting the policy
sent from GitHub's servers.

» Does Not Prevent All Exposure: If a developer copies a piece of code from an
excluded file and pastes it into a non-excluded file, that pasted code now
becomes part of the context and will be sent to Copilot. It only prevents
Copilot from proactively reading the excluded files.

This is a critical legal and IP concept.

e The Rule: According to the GitHub Copilot terms of service, the user is the
owner of the code they write, including the suggestions they accept from
GitHub Copilot. GitHub does not claim any ownership rights over the output.

o The Responsibility: This ownership comes with responsibility. The developer
is responsible for the quality, security, and IP compliance of the final code,
regardless of how much of it was generated by Al.

Section 3: Safeguards

GH-300 - aidecoded.tech



This section covers the built-in features designed to make Copilot safer to use.

This is the official name for the filter that checks suggestions against public code.

e Function: It is designed to prevent "code laundering" or unintentional
plagiarism of open-source code.

e Mechanism: It compares generated suggestions against an index of public
code on GitHub. If a suggestion is a near-verbatim match of a significant
length (e.g., ~150 characters), it is blocked.

o User Control: This feature is on by default but can be disabled by the user (or
by an organization policy).

Copilot has several built-in security checks:

« Hardcoded Credentials: It actively tries to filter out suggestions that contain
common patterns for APl keys, passwords, or other secrets.

e Insecure Patterns: It is trained to avoid common vulnerabilities (like SQL
injection, path traversal) and will steer users toward safer alternatives.

« Vulnerability Scanning (of suggestions): While not a full static analysis tool,
the service performs lightweight scans on its own suggestions to filter out
those that introduce known security flaws.

Section 4: Troubleshooting
This section covers common problems users might encounter.

1. Check for Exclusions: This is the most likely cause. The file or language might
be disabled. Check your local editor settings (e.g., VS Code's settings.json for
github.copilot.editor.exclude) and your organization's content exclusion
policies.

2. Check the Language: Copilot may have limited or no support for very obscure
or new programming languages.

3. File Size: Very large files can sometimes cause performance issues, leading to
slow or absent suggestions.

4. Network Connection: Ensure you are connected to the internet and can reach
GitHub's services. Check the Copilot icon in the status bar for any error

GH-300 - aidecoded.tech

56



messages.

5. Restart the Extension/IDE: Sometimes, simply restarting the IDE or reloading
the Copilot extension can resolve temporary glitches.

o Outdated Extension: The user might be running a very old version of the
Copilot extension that doesn't correctly support or receive the organization's
policies.

» Configuration Error: The path specified in the organization's settings might
have a typo or use incorrect wildcard syntax, meaning it isn't matching the
intended files.

o User Copied Content: As mentioned before, if a user manually copies content
from an excluded file into an active, non-excluded file, that content becomes
part of the prompt.

Practice Exam Questions for Domain 7

1. What is the key privacy difference between the Copilot Individual and
Copilot Business SKUs?

a) Copilot Business is faster.

b) Copilot Business, by default, does not retain user code snippets, while
Copilot Individual may.

c) Only Copilot Individual works with private repositories.
d) Only Copilot Business has a duplication detector.

2. Who is the legal owner of a function generated by GitHub Copilot and
accepted by a developer?

a) GitHub.
b) Microsoft.
c) The developer who accepted the suggestion.

d) The original author of the code it was trained on.

3. An administrator wants to prevent Copilot from ever using the contents of
files located in any **/config/ directory across the entire organization.
Where should they configure this?

GH-300 - aidecoded.tech 57



a) In each user's personal GitHub settings.
b) In the organization's settings under "Copilot Policies > Content Exclusions".
c) By adding **/config/ to the .gitignore file of every repository.
d) This level of control is not possible.
4. What is the primary purpose of the "duplication detector" filter?

a) To ensure all code suggestions are unique and have never been written
before.

b) To block suggestions that are a verbatim match to public code on GitHub,
mitigating IP risks.

c) To find and remove duplicate code within the user's own project.
d) To check for security vulnerabilities.

5. A developer notices that Copilot is hot providing suggestions in their
app.secrets.json file. What is the most likely reason?

a) The file is too small for Copilot to analyze.
b) The Copilot service is down for maintenance.

c) A content exclusion policy (either at the organization or editor level) is
preventing Copilot from activating for that file pattern.

d) JSON is not a supported language.

6. What is a potential downside of applying a content exclusion to a core
library file in your project?

a) It will improve Copilot's performance.

b) It may lead to less relevant suggestions in other files that depend on that
library.

c) It will automatically refactor the excluded file.

d) It will increase the cost of the Copilot subscription.
7. Which Copilot SKU offers IP Indemnity?

a) Copilot Individual only.

b) All Copilot plans.

GH-300 - aidecoded.tech



10.

11.

c) Copilot Business and Enterprise.

d) No Copilot plans offer IP Indemnity.

. The ownership of Copilot's output comes with what important caveat for the

developer?
a) They must pay royalties to GitHub for any code used in production.

b) They are responsible for the security, quality, and IP compliance of the final
code.

c) They must add a comment attributing the code to GitHub Copilot.

d) They cannot modify the code once it has been accepted.

. A developer copies a secret key from an excluded file and pastes itinto a

regular .js file to debug something. What happens?
a) Copilot will still be blocked from seeing the key due to the exclusion policy.
b) The IDE will automatically delete the key.

c) The pasted key is now part of the active file's context and may be sent to
the Copilot service.

d) Copilot will report the user to their organization's administrator.

A user on the Copilot Individual plan is concerned about privacy. What is the
best course of action?

a) Stop using Copilot immediately.

b) Go into their GitHub settings and opt out of having their data used to
improve the product.

c) Buy a Copilot Business license for themselves.
d) Both B and C are valid and effective options.
Which of the following is a built-in security safeguard in GitHub Copilot?

a) A filter that attempts to prevent suggestions containing hardcoded
credentials.

b) A guarantee that all suggested code is 100% free of vulnerabilities.

c) Automatic integration with your antivirus software.

GH-300 - aidecoded.tech

59



d) A feature that formally audits your entire codebase.

12. Troubleshooting: Why might a context exclusion policy not be working for a
specific user?

a) The user has administrator privileges, so policies don't apply to them.
b) The user is running a very old version of the Copilot IDE extension.

c) The user has their computer's firewall turned on.

d) The policy only works on Tuesdays.

13. Which file can be used to control Copilot's behavior at a repository/editor
level by specifying file types to ignore?

a) package.json
b) .gitignore (indirectly) and the editor's settings.json (directly).
c) README.md
d) CONTRIBUTING.md
L4. The term "SKU" in the context of GitHub Copilot refers to:
a) A specific code suggestion.
b) The different product plans (Individual, Business, Enterprise).
c) A security key for using the API.
d) A software development kit.

15. If the duplication detector is enabled, what happens when Copilot generates
a suggestion that is a verbatim match to public code?

a) The suggestion is shown with a warning and a link to the original source.
b) The suggestion is blocked and never shown to the user.
c) The user's account is temporarily suspended.

d) The suggestion is automatically licensed under the same license as the
original code.

Correct Answers: 1-b, 2-c, 3-b, 4-b, 5-c, 6-b, 7-c, 8-b, 9-c, 10-d, 11-a, 12-b, 13-b,
14-b, 15-b.

GH-300 - aidecoded.tech



